3.554 \(\int \frac{\sec ^5(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=359 \[ \frac{2 \sqrt{a+b} \left (-12 a^2 b+48 a^3+44 a b^2+25 b^3\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{105 b^4 d}+\frac{2 \left (24 a^2+25 b^2\right ) \tan (c+d x) \sqrt{a+b \sec (c+d x)}}{105 b^3 d}+\frac{8 a (a-b) \sqrt{a+b} \left (12 a^2+11 b^2\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{105 b^5 d}-\frac{12 a \tan (c+d x) \sec (c+d x) \sqrt{a+b \sec (c+d x)}}{35 b^2 d}+\frac{2 \tan (c+d x) \sec ^2(c+d x) \sqrt{a+b \sec (c+d x)}}{7 b d} \]

[Out]

(8*a*(a - b)*Sqrt[a + b]*(12*a^2 + 11*b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]]
, (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(105*b^5*d) +
 (2*Sqrt[a + b]*(48*a^3 - 12*a^2*b + 44*a*b^2 + 25*b^3)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]
/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/
(105*b^4*d) + (2*(24*a^2 + 25*b^2)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(105*b^3*d) - (12*a*Sec[c + d*x]*Sqr
t[a + b*Sec[c + d*x]]*Tan[c + d*x])/(35*b^2*d) + (2*Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(7*b
*d)

________________________________________________________________________________________

Rubi [A]  time = 0.672518, antiderivative size = 359, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3860, 4092, 4082, 4005, 3832, 4004} \[ \frac{2 \left (24 a^2+25 b^2\right ) \tan (c+d x) \sqrt{a+b \sec (c+d x)}}{105 b^3 d}+\frac{2 \sqrt{a+b} \left (-12 a^2 b+48 a^3+44 a b^2+25 b^3\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{105 b^4 d}+\frac{8 a (a-b) \sqrt{a+b} \left (12 a^2+11 b^2\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{105 b^5 d}-\frac{12 a \tan (c+d x) \sec (c+d x) \sqrt{a+b \sec (c+d x)}}{35 b^2 d}+\frac{2 \tan (c+d x) \sec ^2(c+d x) \sqrt{a+b \sec (c+d x)}}{7 b d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^5/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(8*a*(a - b)*Sqrt[a + b]*(12*a^2 + 11*b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]]
, (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(105*b^5*d) +
 (2*Sqrt[a + b]*(48*a^3 - 12*a^2*b + 44*a*b^2 + 25*b^3)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]
/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/
(105*b^4*d) + (2*(24*a^2 + 25*b^2)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(105*b^3*d) - (12*a*Sec[c + d*x]*Sqr
t[a + b*Sec[c + d*x]]*Tan[c + d*x])/(35*b^2*d) + (2*Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(7*b
*d)

Rule 3860

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*d^2
*Cos[e + f*x]*(d*Csc[e + f*x])^(n - 2)*Sqrt[a + b*Csc[e + f*x]])/(b*f*(2*n - 3)), x] + Dist[d^3/(b*(2*n - 3)),
 Int[((d*Csc[e + f*x])^(n - 3)*Simp[2*a*(n - 3) + b*(2*n - 5)*Csc[e + f*x] - 2*a*(n - 2)*Csc[e + f*x]^2, x])/S
qrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n
]

Rule 4092

Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(
e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Csc[e + f*x]*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m
 + 1))/(b*f*(m + 3)), x] + Dist[1/(b*(m + 3)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[a*C + b*(C*(m + 2)
 + A*(m + 3))*Csc[e + f*x] - (2*a*C - b*B*(m + 3))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m
}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rule 4082

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m
+ 2)), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*B*
(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[(Csc[e + f*x]*(1 +
 Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^5(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx &=\frac{2 \sec ^2(c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{7 b d}+\frac{\int \frac{\sec ^2(c+d x) \left (4 a+5 b \sec (c+d x)-6 a \sec ^2(c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx}{7 b}\\ &=-\frac{12 a \sec (c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{35 b^2 d}+\frac{2 \sec ^2(c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{7 b d}+\frac{2 \int \frac{\sec (c+d x) \left (-6 a^2+a b \sec (c+d x)+\frac{1}{2} \left (24 a^2+25 b^2\right ) \sec ^2(c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx}{35 b^2}\\ &=\frac{2 \left (24 a^2+25 b^2\right ) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{105 b^3 d}-\frac{12 a \sec (c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{35 b^2 d}+\frac{2 \sec ^2(c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{7 b d}+\frac{4 \int \frac{\sec (c+d x) \left (-\frac{1}{4} b \left (12 a^2-25 b^2\right )-a \left (12 a^2+11 b^2\right ) \sec (c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx}{105 b^3}\\ &=\frac{2 \left (24 a^2+25 b^2\right ) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{105 b^3 d}-\frac{12 a \sec (c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{35 b^2 d}+\frac{2 \sec ^2(c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{7 b d}-\frac{\left (4 a \left (12 a^2+11 b^2\right )\right ) \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx}{105 b^3}+\frac{\left (48 a^3-12 a^2 b+44 a b^2+25 b^3\right ) \int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{105 b^3}\\ &=\frac{8 a (a-b) \sqrt{a+b} \left (12 a^2+11 b^2\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{105 b^5 d}+\frac{2 \sqrt{a+b} \left (48 a^3-12 a^2 b+44 a b^2+25 b^3\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{105 b^4 d}+\frac{2 \left (24 a^2+25 b^2\right ) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{105 b^3 d}-\frac{12 a \sec (c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{35 b^2 d}+\frac{2 \sec ^2(c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{7 b d}\\ \end{align*}

Mathematica [A]  time = 14.4955, size = 463, normalized size = 1.29 \[ \frac{4 \sqrt{\sec (c+d x)} \sqrt{\cos ^2\left (\frac{1}{2} (c+d x)\right ) \sec (c+d x)} \left (b \left (-12 a^2 b-48 a^3-44 a b^2+25 b^3\right ) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} \text{EllipticF}\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right ),\frac{a-b}{a+b}\right )+2 a \left (12 a^2+11 b^2\right ) \cos (c+d x) \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^2\left (\frac{1}{2} (c+d x)\right ) (a \cos (c+d x)+b)+4 a \left (12 a^2 b+12 a^3+11 a b^2+11 b^3\right ) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} E\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a-b}{a+b}\right )\right )}{105 b^4 d \sqrt{\sec ^2\left (\frac{1}{2} (c+d x)\right )} \sqrt{a+b \sec (c+d x)}}+\frac{\sec (c+d x) (a \cos (c+d x)+b) \left (-\frac{8 a \left (12 a^2+11 b^2\right ) \sin (c+d x)}{105 b^4}+\frac{2 \sec (c+d x) \left (24 a^2 \sin (c+d x)+25 b^2 \sin (c+d x)\right )}{105 b^3}-\frac{12 a \tan (c+d x) \sec (c+d x)}{35 b^2}+\frac{2 \tan (c+d x) \sec ^2(c+d x)}{7 b}\right )}{d \sqrt{a+b \sec (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^5/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(4*Sqrt[Sec[c + d*x]]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(4*a*(12*a^3 + 12*a^2*b + 11*a*b^2 + 11*b^3)*Sqrt[
Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[
(c + d*x)/2]], (a - b)/(a + b)] + b*(-48*a^3 - 12*a^2*b - 44*a*b^2 + 25*b^3)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*
x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a +
b)] + 2*a*(12*a^2 + 11*b^2)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*b^4*d
*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[a + b*Sec[c + d*x]]) + ((b + a*Cos[c + d*x])*Sec[c + d*x]*((-8*a*(12*a^2 + 11*b
^2)*Sin[c + d*x])/(105*b^4) + (2*Sec[c + d*x]*(24*a^2*Sin[c + d*x] + 25*b^2*Sin[c + d*x]))/(105*b^3) - (12*a*S
ec[c + d*x]*Tan[c + d*x])/(35*b^2) + (2*Sec[c + d*x]^2*Tan[c + d*x])/(7*b)))/(d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.683, size = 1852, normalized size = 5.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^5/(a+b*sec(d*x+c))^(1/2),x)

[Out]

2/105/d/b^4*(cos(d*x+c)+1)^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(-48*cos(d*x+c)^3*sin(d*x+c
)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/
sin(d*x+c),((a-b)/(a+b))^(1/2))*a^4-25*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^4-48*cos(d*x+c)
^4*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+
cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3*b-25*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)
*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^4
-48*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*
EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^4-24*cos(d*x+c)^3*a^3*b+15*b^4-44*cos(d*x+c)^4*sin
(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*
x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2-44*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3+4
8*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*El
lipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3*b+12*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+
c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b)
)^(1/2))*a^2*b^2+44*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d
*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3-48*cos(d*x+c)^3*sin(d*x+c)*(co
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d
*x+c),((a-b)/(a+b))^(1/2))*a^3*b-44*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*co
s(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2-44*cos(d*x+c
)^3*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1
+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3+48*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2
)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^
3*b+12*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/
2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2+44*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(c
os(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b
)/(a+b))^(1/2))*a*b^3+48*cos(d*x+c)^5*a^4-48*cos(d*x+c)^4*a^4-25*cos(d*x+c)^4*b^4+10*cos(d*x+c)^2*b^4-16*cos(d
*x+c)^3*a*b^3+6*cos(d*x+c)^2*a^2*b^2-3*cos(d*x+c)*a*b^3-24*cos(d*x+c)^5*a^3*b+44*cos(d*x+c)^5*a^2*b^2-25*cos(d
*x+c)^5*a*b^3+48*cos(d*x+c)^4*a^3*b-50*cos(d*x+c)^4*a^2*b^2+44*cos(d*x+c)^4*a*b^3)/(b+a*cos(d*x+c))/cos(d*x+c)
^3/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sec \left (d x + c\right )^{5}}{\sqrt{b \sec \left (d x + c\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sec(d*x + c)^5/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{5}{\left (c + d x \right )}}{\sqrt{a + b \sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**5/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**5/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{5}}{\sqrt{b \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^5/sqrt(b*sec(d*x + c) + a), x)